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Abstract
A dislocation equation satisfied by both horizontal displacement parallel to the
glide plane and vertical displacement perpendicular to the glide plane has been
derived generally from the lattice dynamics. In the slow-varying approximation
that can be well applied to the dislocation, the equation has been changed
into an integro-differential equation that possesses a universal form except the
coefficients. If the higher-order derivatives of the displacement are canceled,
the classic Peierls equation is recovered. The terms proportional to the higher-
order derivatives represent the lattice effects that cannot be obtained in the
continuum theory, and cannot be neglected in the core of the dislocation. The
results are helpful to link the plasticity with the electronic structure of material
because it is rigorously shown that the dislocation structure is mainly controlled
by a few factors.

PACS numbers: 61.72.Bb, 61.72.Lk

1. Introduction

The relationship between the electronic structure and plasticity of material remains to be a
challenge in the condensed matter theory. On the atomic level, the plasticity can be interpreted
by virtue of the dislocation. The plastic deformation in metals and semiconductors is controlled
by the mobility of dislocation and interactions of dislocations with each other and with other
defects in the crystal [1]. The mobility and interactions are controlled by the core structure of
the dislocation. Hence, the key is the core structure of the dislocation. In order to understand
the relationship between electronic structure and plasticity, it is essential to understand first
what control the structure of the dislocation and reveal the general relationships between the
dislocation structure and the crystal characteristics from first principles.

* The work is supported by the National Natural Science Foundation of China (grant no 10774196) and Natural
Science Foundation Project of CQ CSTC (grant no 2006BB4156).
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Since the dislocation mechanism of the material plasticity was introduced by Orowan,
Polanyi and Taylor [2], great efforts have been made in understanding the structure of the
dislocation. The most famous and successful theory is the Peierls–Nabarro (P–N) theory
[3–5]. The P–N theory provides a conceptual framework for the dislocation structure and
energetics. Appearance of dislocation will break the global order and make the crystal differ
from a perfect crystal in topology. The different topology can be obtained by the different
gluing. A well known example is the Mobius strip that can be obtained by gluing a band
in a non-trivial way. In the P–N theory, the crystal is divided into two parts along the glide
plane of the dislocation. Due to nonlinear interaction, dislocation defect is produced when
the two parts are glued non-trivially. Unfortunately, although the gluing idea light the way for
solving the problem involving the topology, the classical P–N theory has not thought useful as
a predictive tool because prediction lack a quantitative agreement with experiments [1]. There
are drawbacks that should be improved. In the P–N theory, the fundamental equation (Peierls
equation) that determine the dislocation structure is a balance between the nonlinear force
due to misfit gluing and the linear force due to deformation. Initially, the linear force was
obtained through an assumption that the crystal can be approximated as an elastic continuum.
The nonlinear force was approximated by the sinusoidal force law. Later, Christian and Vitek
[6] suggested that the nonlinear interaction can be identified with the generalized stacking
fault (GFS) energy. The GSF energy is an effective interplanar potential energy which can
be obtained from first principles. The theoretical predictions have been improved remarkably
since the GFS energy could be evaluated accurately [7–12]. However, the drawback of the
continuum approximation remain to be relaxed. At the core of the dislocation, the displacement
field varies so abruptly that Peierls equation is no longer valid in particular for the narrow
dislocation. Therefore, the accuracy of prediction can be effected strongly by the continuum
approximation. The discrete effects had been incorporated into the P–N theory by replacing
the integrations by the discrete sums [7, 8]. However, in order to include the lattice effects
adequately, one should relax the continuum approximation at the beginning and derive the
modified equation from the first principles. Recently, author has made an effort to derive
the Peierls equation from the lattice dynamics rather than the elastic mechanics. A modified
equation has been derived for some simplified models [13, 14]. In this paper, it is shown that
from the lattice dynamics an improved dislocation equation which includes the lattice effects
can be derived generally. The equation is an integro-differential equation that possesses a
universal form except the coefficients. If the higher-order derivatives of the displacement are
canceled, the classic Peierls equation is recovered. The terms proportional to the higher-order
derivatives represent the lattice effects that cannot be obtained in the continuum theory, and
cannot be neglected in the core of the dislocation.

The context is organized as follows. In the following section, the problem of a half-
infinite crystal with the external force imposed on the surface is solved formally. In section 3,
the reduced dynamical matrix (RDM) in the wave-vector space has been discussed based on
general features of the crystal. It is found that the behavior of the RMD can be qualitatively
determined from the general features of the lattice. In section 4, based on the results obtained,
the elements of the RDM in the k-space are expanded in the Fourier series, and the related
operators in the real space are given in the slow-varying approximation. In section 5, the
chiral symmetry has been introduced to understand the structure of the equation. The chiral
symmetry may be also called parity symmetry because it is originated from equivalence of
the left and right. In section 6, the dislocation equation is derived within the local interaction
approximation between two half-infinite crystals. The last section is a brief discussion and
summary.

2



J. Phys. A: Math. Theor. 41 (2008) 015005 S F Wang

2. Border equation of a two-dimensional half-infinite lattice

For a two-dimensional (2D) half-infinite lattice, if the external force is imposed only on the
atoms located at the border, one can derive a balance equation that relates the displacement
of the border atoms to the external force. The equation can be easily obtained by introducing
the concept of compensating force. Let’s image the half-infinite lattice as the upper half of an
infinite lattice. In the harmonic approximation, internal force felt by the atom in the infinite
lattice can be written as −Du, where D is the 2 × 2 dynamical matrix,

D =
(

Dxx Dxy

Dyx Dyy

)
,

and u = (ux, uy) is the displacement field. Focusing on the atoms in the upper half, the internal
force only from the atoms in the upper half can be obtained by extracting the contribution
of the lower half from the total force −Du. The contribution from the atoms in the lower
half will be referred to as compensating force and denoted by −�u. In the equilibrium, the
external force f = (fx, fy) is balanced by the internal force that is given by the difference of
the total force and compensating force

Du − �u = f. (1)

This is the balance equation that is written in the matrix form for convenience. Obviously, the
compensating force is closely related to the dynamics of the lattice. If the dynamical matrix
D is given, the compensating matrix � can be separated from the D [13, 14].

In terms of Green’s function G

DG = 1,

the solution of equation (1) can be written as

u = G(1 − �G)−1f. (2)

If the force f does not vanish only for the atoms on the border and the displacements of the
border atoms are interested, equation (2) gives the relation between the imposed force and the
displacements of the atoms on the border. In order to show this explicitly, let’s introduce

�−1 = G(1 − �G)−1, (3)

and rewrite equation (2) explicitly as

ui(n, l) =
∑
n′l′

∑
j

�−1
ij (n, n′, l − l′)fj (n

′, l′),

where n, n′ = 0, 1, 2, . . . , is the order number of the atom chains parallel to the border and
integers l, l′ = 0,±1,±2, . . . , are used to label the atoms on the chain. The translation
symmetry along the border direction has been used in the expression. Since displacements
of the atoms on the border n = 0 are considered only and fj (n

′, l′) = 0 if n′ �= 0, so
equation (2) reduces as unidimensional

ui(0, l) =
∑

l′

∑
j

�−1
ij (0, 0, l − l′)fj (0, l′).

In brief,

ui(l) =
∑

l′

∑
j

�−1
ij (l − l′)fj (l

′),

3
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or ∑
l′

∑
j

�ij (l − l′)uj (l
′) = fi(l). (4)

Equation (4) is a balance equation of the border acted by the external force. It will be named
as the border equation and the matrix �ij (l − l′) will be named as the reduced dynamical
matrix (RDM).

In the wave-vector space (k-space), the border equation becomes

�̃(k)̃u(k) = f̃ (k), (5)

with

u(l) = a

2π

∫ π
a

− π
a

ũ(k) e−ilka dk,

�(l) = a

2π

∫ π
a

− π
a

�̃(k) e−ilka dk,

where a is the period of the border.
If the external force is imposed along the direction parallel to the border, that is

f̃y = 0,

then the vertical component ũy can be simply expressed by the parallel component ũx ,

ũy = − �̃∗
xy

�̃yy

ũx, (6)

and the parallel component ũx satisfies the following equation:(
�̃xx − |�̃xy |2

�̃yy

)
ũx = f̃x . (7)

3. General properties of the RDM in the k-space

Because the RDM �̃(k) is a Hermitian matrix

�̃+(k) = �̃(k), (8)

the diagonal elements are real

�̃∗
xx(k) = �̃xx(k), �̃∗

yy(k) = �̃yy(k),

and the off-diagonal elements are conjugated

�̃∗
xy(k) = �̃yx(k).

From the fact that �(l) is a real matrix, it is easy to obtain

�̃∗(k) = �̃(−k). (9)

From equations (8) and (9) it is clear that in the k-space the diagonal elements are real even
functions,

�̃xx(−k) = �̃xx(k) = �̃∗
xx(k), �̃yy(−k) = �̃yy(k) = �̃∗

yy(k).

As for the off-diagonal elements, the real part is an even function and the imaginary part is an
odd function,

�̃∗
xy(k) = �̃xy(−k).

4
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Let’s decompose the matrix �̃(k) into the real part and the imaginary part

�̃(k) = �̃r(k) + i�̃i(k).

Then, the real part �̃r(k) is even,

�̃r(−k) = �̃r(k),

and the imaginary part �̃i(k) is odd,

�̃i(−k) = −�̃i(k).

For a rigid translation of the crystal, the displacement is the same for every atom, that is
u(l) = u, and no interaction force will appear∑

l′
�(l − l′)u(l′) =

∑
l

�(l)u = 0.

Because u is an arbitrary vector, one obtains∑
l

�(l) = 0

or

�̃(0) = 0. (10)

Therefore, the matrix �̃ vanishes at the center of the Brillouin zone. At the ends of the
Brillouin zone k = ±π/a, it can be proved that the imaginary part vanishes

�̃i |k=± π
a

= 0,

and the derivative of the real part �̃r vanishes

d�̃r

dk

∣∣∣∣
k=± π

a

= 0.

The proof is simple. From the periodicity

�̃

(
k +

2π

a

)
= �̃(k),

one has

�̃
(
k +

π

a

)
= �̃

(
k − π

a

)
.

Because �̃r is a periodic even function, one has

�̃r
(
k +

π

a

)
= �̃r

(
−k +

π

a

)
. (11)

Taking differential to the both sides of equation (11), then let k = 0, one obtains

d�̃r

dk

∣∣∣∣
k= π

a

= −d�̃r

dk

∣∣∣∣
k= π

a

= 0.

Because �̃i is a periodic odd function, one has

�̃i
(
k +

π

a

)
= −�̃i

(
−k +

π

a

)
. (12)

Taking k = 0, one obtains

�̃i
(π

a

)
= −�̃i

(π

a

)
= 0.

5
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Figure 1. The typical behaviors of the elements of the RDM in the k-space. All the elements vanish
at the origin, k = 0. The diagonal elements have singularity at the origin while the off-diagonal is
smooth in the Brillouin zone.

In figure 1, the matrix elements as a function of the wave vector k have been plotted qualitatively.
The behaviors of the real elements look like the phonon dispersion relation. Its derivative is
not continuous at the origin. The imaginary elements are smooth functions.

If the matrix �̃ is expanded in the power series at the origin k = 0, its real part will be

�̃r = |k|
[

d�̃r

dk
(0) +

1

3!

d2�̃r

dk3
(0)k2 + · · ·

]
+

1

2!

d2�̃r

dk2
(0)k2 +

1

4!

d4�̃r

dk4
(0)k4 + · · · ,

and its imaginary part will be

�̃i = d�̃i

dk
(0)k +

1

3!

d3�̃i

dk3
(0)k3 + · · · .

Apparently, �̃r is consisted of singular part and regular part

�̃r = �̃rs + �̃rr ,

with

�̃rs = |k|
[

d�̃r

dk
(0) +

1

3!

d3�̃r

dk3
(0)k2 + · · ·

]
,

�̃rr = 1

2!

d2�̃r

dk2
(0)k2 +

1

4!

d4�̃r

dk4
(0)k4 + · · · .

The singularity of �̃r at the origin is a representative of the long-range interaction. The
Hermitian property of the RDM in the k-space implies

�T (l) = �(−l), (13)

in the real space.

6
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4. The Fourier series and slow-varying approximation

Following the method given in ref [14], the Fourier series and slow-varying approximation of
the RDM are discussed in this section. For the imaginary part, the Fourier series is simple

�̃i =
∑

n

bi
n sin(nka), bi

n = a

π

∫ π
a

− π
a

�̃i sin(nka) dk,

where the property of the odd function has been used. For the regular part of the real part, the
Fourier series is also simple

�̃rr =
∑

n

brr
n cos(nka),

brr
0 = a

2π

∫ π
a

− π
a

�̃rr dk,

brr
n = a

π

∫ π
a

− π
a

�̃rr cos(nka) dk, n �= 0,

where the property of the even function has been used.
It should be careful when the singular part �̃rs is expanded in the Fourier series. Because

of the singularity, �̃rs cannot be expanded simply like �̃i and �̃rr . In order to expand �̃rs

in a correct way, instead of the whole Brillouin zone, one should take the half Brillouin zone
(0, π/a) as the domain in which �̃rs is smooth. This can always be done because �̃rs is an
even function. The �̃rs as a function defined in the half Brillouin zone satisfies the following
boundary conditions:

�̃rs |k=0 = 0,
d�̃rs

dk

∣∣∣∣
k= π

a

= 0.

Therefore, it can be expanded as

�̃rs =
∑

n

brs
n sin

(
n +

1

2

)
ka,

(14)

brs
n = 2a

π

∫ π
a

0
�̃(rs) sin

(
n +

1

2

)
ka dk.

Substituting �̃ expressed in the Fourier series into the equation

�(l) = a

2π

∫ π
a

− π
a

�̃(k) e−ilka dk,

one can express �(l) in terms of Fourier coefficients,

�rr(l) = a

2π

∫ π
a

− π
a

�̃rr (k) e−ilka dk

= 1

2

∑
n

(δn+l + δn−l )b
rr
n ,

�i(l) = a

2π

∫ π
a

− π
a

�̃i(k) e−ilka dk

= i

2

∑
n

(δn+l − δn−l )b
i
n,

7
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�rs(l) = a

2π

∫ π
a

− π
a

�̃rs(k) e−ilka dk

= a

2π

∑
n

2n + 1(
2n+1

2

)2 − l2
brs

n .

Now it is time to discuss the border equation in the slow-varying approximation. First,∑
�′

�rs(� − �′)u(�′) = 1

2π

∑
�′

∞∑
n=1

(2n + 1)brs
n(

2n+1
2

)2 − (� − �′)2
u(�′)

= −1

2π

∞∑
n=1

brs
n

∑
�′

[
u(�′)

� − �′ − 2n+1
2

− u(�′)
� − �′ + 2n+1

2

]

= −1

2π

∞∑
n=1

brs
n

∑
σ

u
(
σ + 2n+1

2

) − u
(
σ − 2n+1

2

)
σ − �

,

where σ in the last sum runs over the half integers. For the case of that the displacement field
varies smoothly and slowly, one can extend the function u analytically and expand it in the
power series, i.e.

u

(
σ +

2n + 1

2

)
− u

(
σ − 2n + 1

2

)
=

∞∑
j=0

2

(2j + 1)!

d2j+1u(σ)

dσ 2j+1

(
2n + 1

2

)2j+1

.

In addition, from equation (14), it is easy to get an identity
∞∑

n=1

(
2n + 1

2

)2j+1

brs
n = (−1)j

d2j+1�̃rs(k)

dk2j+1

∣∣∣∣
k=0+

.

By virtue of the identity, one can arrive at∑
�′

�rs(� − �′)u(�′) = −1

π

∑
σ

1

σ − �

∞∑
j=0

(−1)j

(2j + 1)!

d2j+1�̃rs(k)

dk2j+1

∣∣∣∣
k=0+

d2j+1u(σ)

dσ 2j+1

= −1

π

∫ +∞

−∞

dx ′

x ′ − x

[
1

1!

d�̃rs

dk

∣∣∣∣
k=0+

du

dx
− 1

3!

d3�̃rs

dk3

∣∣∣∣
k=0+

d3u

dx3
+ · · ·

] ∣∣∣∣
x=x ′

,

= −1

π

∫ +∞

−∞

dx ′

x ′ − x

[
1

1!

d�̃r

dk

∣∣∣∣
k=0+

du

dx
− 1

3!

d3�̃r

dk3

∣∣∣∣
k=0+

d3u

dx3
+ · · ·

] ∣∣∣∣
x=x ′

,

(15)

where x = �a, a is the lattice constant, the sum over σ has been changed into integral in the
last expression. Next,

−i
∑
�′

�i(� − �′)u(�′) = 1

2

∞∑
n=1

bi
n[u(� + n) − u(� − n)]

= 1

1!

d�̃i

dk

∣∣∣∣
k=0

du

dx
− 1

3!

d3�̃i

dk3

∣∣∣∣
k=0

d3u

dx3
+ · · · , (16)

∑
�′

�rr(� − �′)u(�′) = 1

2

∞∑
n=1

brr
n [u(� + n) + u(� − n) − 2u(�)]

= − 1

2!

d2�̃rr

dk2

∣∣∣∣
k=0

d2u

dx2
+

1

4!

d4�̃rr

dk4

∣∣∣∣
k=0

d4u

dx4
+ · · ·

= − 1

2!

d2�̃r

dk2

∣∣∣∣
k=0

d2u

dx2
+

1

4!

d4�̃r

dk4

∣∣∣∣
k=0

d4u

dx4
+ · · · . (17)

8
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If each series in terms of the derivatives is truncated suitably, the discrete border equation will
be changed into an integro-differential equation. A practically useful equation will be given
in the following section.

5. Chiral symmetry

For the case interested practically, the half-crystal generally possesses a mirror symmetry with
regard to the mirror plane perpendicular to the border. Existence of the mirror symmetry
indicates that the left and right are equivalent. One has the freedom to choose a right-hand
coordinate system or a left-hand coordinate system. The border equation would take the same
form for the both coordinate systems. So, it is convenient to call such a symmetry as the chiral
symmetry.

Under the transformation from the right-hand to the left-hand coordinate system, i.e. the
chiral transformation, the coordinate of an atom on the border changes a sign,

l −→ −l,

the displacement component parallel to the border changes a sign,

ux −→ −ux,

the displacement perpendicular to the border keeps invariant,

uy −→ uy,

and the force vector changes in the same way as the displacement vector. Introducing the
transformation matrix

M =
(−1 0

0 1

)
,

the change of a vector like the displacement can be written as

u −→ Mu =
(−1 0

0 1

) (
ux

uy

)
=

(−ux

uy

)
.

Now, it is ready to obtain the transformation relationship between the RDM given in the right-
hand and left-hand coordinate systems. In order to avoid the confusion, the variables given
in the right-hand (left-hand) coordinates system will be denoted with the subscript R(L), for
example, lR (lL), uR (uL), fR (fL). First, let’s write the border equation in the right-hand
coordinates system,∑

l′R

�R(lR − l′R)uR(l′R) = fR(lR). (18)

As shown above, the displacement and force in different coordinate system are related through
the chiral transformation

lR = −lL, uR(lR) = MuL(lL), fR(lR) = MfL(lL).

Substituting into equation (18), one obtains∑
l′L

�R(−lL + l′L)MuL(l′L) = MfL(lL).

Multiplying M−1 to both sides of this equation,∑
l′L

M−1�R(−lL + l′L)MuL(l′L) = fL(lL),

9
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it is easy to identify that

�L(l) = M−1�R(−l)M. (19)

This is the transformation relationship of the RDM under the chiral transformation. The border
equation should take the same form if there exists the chiral symmetry

�L(l) = �R(l) = M−1�R(−l)M, (20)

or explicitly (
�xx(l) �xy(l)

�yx(l) �yy(l)

)
=

(
�xx(−l) −�xy(−l)

−�yx(−l) �yy(−l)

)
,

the subscript has been dropped in the last equation. Therefore, one can conclude that the
diagonal elements of the RDM matrix are even functions, the off-diagonal elements are odd
functions if the RDM is invariant under the chiral transformation. In the k-space, the conclusion
is the same,

�̃xx(−k) = �̃xx(k), �̃yy(−k) = �̃yy(k),

�̃xy(−k) = −�̃xy(k), �̃yx(−k) = −�̃yx(k).

The first two equations are satisfied automatically as shown previously. The last two equations
are new relations resulted from the chiral symmetry. The new relations imply that the off-
diagonal elements are pure imaginary

�̃r
xy = �̃r

yx = 0.

In the slow-varying approximation, keeping the derivatives up to the third order, the border
equations (4) with the chiral symmetry read

−1

2
�̃(2)

xx (0)
d2ux

dx2
+ i�̃(1)

xy (0)
duy

dx

− 1

π

∫ +∞

−∞

dx ′

x ′ − x

[
�̃(1)

xx (0)
dux

dx
− 1

6
�̃(3)

xx (0)
d3ux

dx3

] ∣∣∣∣
x=x ′

= f x, (21)

−1

2
�̃(2)

yy (0)
d2uy

dx2
− i�̃(1)

xy (0)
dux

dx

− 1

π

∫ +∞

−∞

dx ′

x ′ − x

[
�̃(1)

yy (0)
duy

dx
− 1

6
�̃(3)

yy (0)
d3uy

dx3

] ∣∣∣∣
x=x ′

= f y. (22)

6. Dislocation equation

The crystal with a dislocation can be viewed as two half-infinite crystals glued together along
the glide plane in a non-trivial way. If the half-infinite crystal above or below the glide plane
is concerned only, it can be viewed as a perfect crystal distorted weakly. So, the half-infinite
crystal itself can be described in the frame of the harmonic approximation. The large distortion
occurs in the transition region where two half-infinite crystals are connected. Because of the
large distortion, the nonlinear interaction between the two half-infinite crystals must be taken
into account. The total force imposed on the border atom located at position l is consisted of
two parts: one is from the internal interaction of the half crystal that can be expressed as

−
∑

l′
�a(l − l′)ua(l′)

10
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half-infinite block below the glide plane

half-infinite block above the glide plane

y

x

-3

-3

-2-1

321

0

-2 -1

3 2 1

0

Figure 2. The intrinsic coordinates for deriving the dislocation, in which the two atoms are paired,
are labeled by l and −l. The crystal has been cut along the glide plane (the dot line).

for the atom l on the border above the glide plane, and

−
∑

l′
�b(l − l′)ub(l′)

for the atom l on the border below the glide plane; another is the ‘external force’ that is from
the other half crystal. In the equilibrium, the balance equations are∑

l′
�a(l − l′)ua(l′) = f a(l),

∑
l′

�b(l − l′)ub(l′) = f b(l),

where f a(l) (f b(l)) is the force acting on the atom l of the half crystal above (below) the
glide plane and imposed by the half crystal below (above) the glide plane. Obviously, if the
half crystal above (below) the glide plane rotates π , it will change into the half crystal below
(above) the glide plane. Therefore, if the intrinsic coordinates systems shown in figure 2 are
used for different half crystals, it must be

�a = �b.

In figure 2, the origins of the coordinates system are chosen so that the atom l in the
upper crystal is aligned vertically with the atom l′ in the lower crystal. The two atoms aligned
vertically will be referred to as an atom pair. For an atom pair, the balance equations can be
written as ∑

l′
�(l − l′)ua(l′) = f a(l), (23)

∑
l′

�(−l + l′)ub(−l′) = f b(−l). (24)

Now, introducing the mass center and relative displacement for the two atoms paired,

uc(l) = 1
2 [ua(l) + ub(−l)], ur(l) = 1

2 [ua(l) − ub(−l)],

11
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from equation (23) plus equations (24) and (23) minus equation (24), one can obtain∑
l′

[�e(l − l′)uc(l′) + �o(l − l′)ur(l′)] = 1

2
[f a(l) + f b(−l)], (25)

∑
l′

[�e(l − l′)ur(l′) + �o(l − l′)uc(l′)] = 1

2
[f a(l) − f b(−l)], (26)

where �e is the even part of the dynamical matrix

�e(l) = 1
2 [�(l) + �(−l)],

and �o is the odd part of the dynamical matrix

�o(l) = 1
2 [�(l) − �(−l)].

In the k-space, equations (25) and (26) become

�̃eũc + �̃oũr = 1
2 (f̃ a + f̃ b|k=−k), (27)

�̃eũr + �̃oũc = 1
2 (f̃ a − f̃ b|k=−k). (28)

In the local approximation, the interaction Hamiltonian between the two half crystals is a
sum of effective pair interaction

Hint =
∑

l

φ[ua(l) − ub(−l)].

As a consequence, the total force felt by an atom pair vanishes

f a(l) + f b(−l) = 0 or f̃ a + f̃ b|k=−k = 0,

and equation (27) can be solved

ũc = −(�̃e)−1�̃oũr . (29)

Substituting equation (29) into equation (28), one has an equation for the relative displacement

�̃ũr = f̃ a, (30)

with

�̃ = �̃e − �̃o(�̃e)−1�̃o. (31)

From the discussion in section 3, it is known that �̃e is the real part of �̃, which is a
symmetry matrix

�̃e =
(

�̃xx �̃r
xy

�̃r
xy �̃yy

)
, (32)

and �̃o is the imaginary part of �̃, which is an antisymmetry matrix

�̃o =
(

0 i�̃i
xy

−i�̃i
xy 0

)
. (33)

Therefore, the matrix �̃ can be obtained explicitly

�̃ =
[

1 −
∣∣�̃i

xy

∣∣2

�̃xx�̃yy − (
�̃r

xy

)2

]
�̃r . (34)

12
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In general, the equations satisfied by the relative displacement are coupled. However, if
the RDM is invariant under the chiral transformation, the matrix �̃ is a diagonal matrix

�̃ =
⎛⎝�̃xx − |�̃xy |2

�̃yy
0

0 �̃yy − |�̃xy |2
�̃xx

⎞⎠ , (35)

and so the equations are decoupled.
As do usually, it is reasonable to assume that if the interval between the upper and lower

border is kept at its equilibrium value, the vertical of the force will be negligible

f a
y −→ 0 as ur

y → 0.

Choosing ur
y = 0 for the dislocation solution, one finally obtains a simplified dislocation

equation

�̃xxũ
r
x = f̃ a

x , �̃xx = �̃xx − |�̃xy |2
�̃yy

. (36)

In the real space, equation (36) reads

−1

2
�̃(2)

xx (0)
d2ur

x

dx2
− 1

π

∫ +∞

−∞

dx ′

x ′ − x

[
�̃(1)

xx (0)
dur

x

dx
− 1

6
�̃(3)

xx (0)
d3ur

x

dx3

] ∣∣∣∣
x=x ′

= f a
x , (37)

with

�̃(j)
xx (0) = dj �̃xx

dkj

∣∣∣∣
k=0+

, j = 1, 2, . . . ,

�̃xx = �̃xx − |�̃xy |2
�̃yy

,

in the slow-varying approximation. This is the dislocation equation that will be closed when
the force law is given.

As long as the relative displacement is known, the mass center displacement can be
obtained through equation (29). It is easy to obtain that

ũc
x = 0,

i.e., the mass center is fixed in the horizontal direction, and

�̃yyũ
c
y = �̃xyũ

r
x, (38)

i.e., a vertical displacement induced by the relative displacement in the horizontal direction
takes place. In the real space, equation (38) reads

−1

2
�̃(2)

yy (0)
d2uc

y

dx2
− 1

π

∫ +∞

−∞

dx ′

x ′ − x

[
�̃(1)

yy (0)
duc

y

dx
− 1

6
�̃(3)

yy (0)
d3uc

y

dx3

] ∣∣∣∣∣
x=x ′

= i�̃(1)
xy (0)

dur
x

dx
.

(39)

This is a linear integro-differential equation.
Because the mass center is fixed in the horizontal direction and the relative displacement

vanishes in the vertical direction, equations (37) and (39) can be written in terms of the

13
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displacements of the atoms on one border

−1

2
�̃(2)

xx (0)
d2ua

x

dx2
− 1

π

∫ +∞

−∞

dx ′

x ′ − x

[
�̃(1)

xx (0)
dua

x

dx
− 1

6
�̃(3)

xx (0)
d3ua

x

dx3

] ∣∣∣∣
x=x ′

= f a
x , (40)

−1

2
�̃(2)

yy (0)
d2ua

y

dx2
− 1

π

∫ +∞

−∞

dx ′

x ′ − x

[
�̃(1)

yy (0)
dua

y

dx
− 1

6
�̃(3)

yy (0)
d3ua

y

dx3

] ∣∣∣∣
x=x ′

= i�̃(1)
xy (0)

dua
x

dx
.

(41)

The displacements of the atoms on the other border are given by

ub
x = −ua

x, ub
y = ua

y.

7. Discussion and summary

The dislocation equation has been derived generally and rigorously from the lattice dynamics.
The vertical displacement as well as the horizontal displacement can be calculated in the
same time. In contrast, the vertical displacement cannot be calculated at all in the classical
P–N theory. It is known that the glide plane will bend in large scale due to appearance of
the dislocation. The bend may be measured through x-ray diffraction. So the theoretical
prediction may be checked by experiment.

The concept of chiral symmetry newly introduced is very important in understanding
the structure of the dislocation. Apparently, in the most cases there always exist the chiral
symmetry. Of course, the chiral symmetry may be broken sometimes. But it is reasonable to
believe that the violation is small and can be neglected in the first approximation.

The dislocation equation in the slow-varying approximation is a modification of the Peierls
equation. It includes corrections from the discrete effects of the lattice. Similar results had
been given in [14], where the dislocation equation was presented for a simplified model of the
cubic lattice. However, there are differences. First, the calculation formulae of the coefficients
in the equation are not exactly the same. The previous expressions are approximation of those
obtained here. Second, the equation of the vertical component is improved.

The dislocation equation has a universal form that does not depend on the type of the
lattice. The difference of the lattice is reflected by the different coefficients appeared in the
equation. Therefore, in addition to the GFS energy, the dislocation structure is controlled by
a few coefficient factors related with small deformation of the crystal. Now, what one need to
do is to determine the coefficients. In principle, these coefficients can be calculated when the
dynamical matrix of the crystal is given. In particular, because the coefficients only relate to
the behavior near the zero point of the RDM in the k-space, it can be calculated perturbatively.
Besides, as a solution of the problem of the half-infinite lattice, the coefficients can be also
evaluated by the first principle calculation.

The dislocation equation derived from the lattice dynamics is more transparent in physics
than that derived from the elastic continuum theory. In the classical P–N theory, one may be
confused with the question such as how to carry out the summation correctly. It is well known
that there are arguments about how to evaluate the dislocation energy and the Peierls stress.
In the lattice theory, everything is clear and definite because it is discrete from the beginning.

The dislocation equation obtained can be straightforwardly applied to the dislocation in
a two-dimensional lattice like the bubble raft. It can also be applied to the dislocation in a
three-dimensional lattice if the straight dislocation can be identified with a ‘point defect’ in
a two-dimensional lattice. If the dislocation in a three-dimensional lattice has both edge and

14
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screw components, one need to extend the classical P–N model (1D model) to be so-called
the 2D model [5, 8, 11, 12]. Actually, in order to theoretically investigate the dislocation
in a three-dimensional lattice, one needs to deal with the two-dimensional glide plane. It
is necessary to find a general dislocation equation satisfied by the displacement field on the
glide plane. The general dislocation equation can address the curved dislocation as well as
the straight dislocation. The method used here is suitable to be generalized to derive such a
dislocation equation.

In summary, the dislocation equation has been derived generally and rigorously from the
lattice dynamics. It is more transparent in physics. It includes correction from the lattice
effects that cannot be obtained in the continuum theory, and cannot be neglected in the core of
the dislocation. It enables one to calculate the vertical displacement as well as the horizontal
displacement. It indicates that the dislocation structure is dominated by a few factors even the
lattice effects are taken into account. If the factors can be related with the electronic structure,
it would be possible to predict and design the plasticity of material microscopically.
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